Tutorial 3
Carrier ambiguity fixing

Contact: jaume.sanz@upc.edu
Web site: http://www.gage.upc.edu
This tutorial is devoted to analyse and assess the ambiguity fixing and the differential positioning with carrier phase measurements (L1, L2). Two receivers UPC1 and UPC2 with a baseline of about 40 metres are considered.

This study includes ambiguity fixing using the “cascade method” (i.e., fixing one at a time) and with the LAMBDA method.

The effect of synchronization errors between the reference station and the user is and its effect on the navigation and ambiguity fixing is also analysed.

All software tools (including $gLAB$) and associated files for the laboratory session are included in the CD-ROM or USB stick associated with this tutorial.
Introduction: gLAB processing in command line.

Preliminary computations: Data files.

Session A: Fixing DD ambiguities one at a time: UPC1-UPC2.

Session B: Assessing the fixed ambiguities in navigation:
Differential positioning of UPC1-UPC2 receivers.

Session C: Fixing DD ambiguities with LAMBDA method.

Note: UPC1-UPC2 receivers baseline: 37.95 metres.
Introduction: gLAB processing in command line.

- Preliminary computations: Data files.
- Session A: Fixing DD ambiguities one at a time: UPC1-UPC2.
- Session B: Assessing the fixed ambiguities in navigation: Differential positioning of UPC1-UPC2 receivers.
- Session C: Fixing DD ambiguities with LAMBDA method.

Note: UPC1-UPC2 receivers baseline: 37.95 metres.
gLAB processing in command line

A “notepad” with the command line sentence is provided to facilitate the sentence writing: just “copy” and “paste” from notepad to the working terminal.
The different messages provided by gLAB and its content can be found in the [OUTPUT] section.

By placing the mouse on a given message name, a tooltip appears describing the different fields.

In console mode: execute gLAB_linux -messages
Introduction: gLAB processing in command line.

Preliminary computations: Data files.

Session A: Fixing DD ambiguities one at a time: UPC1-UPC2.

Session B: Assessing the fixed ambiguities in navigation: Differential positioning of UPC1-UPC2 receivers.

Session C: Fixing DD ambiguities with LAMBDA method.

Note: UPC1-UPC2 receivers baseline: 37.95 metres.
Previous

Preliminary Computations
P. Preliminary computations

This section is devoted to prepare the data files to be used in the exercises.

These data files will include the code and carrier measurements and the model components: geometric range, nominal troposphere and ionosphere corrections, satellite elevation and azimuth from each receiver…

This data processing will be done with gLAB for each individual receiver.

This preliminary processing will provide the baseline data files to perform computations easily using basic tools (such as awk for data files handling, to compute Double Differences of measurements) or using octave (MATLAB) scripts for the LAMBDA method implementation.

Detailed guidelines for self learning students are provided in this tutorial and in its associated notepad text file.
P. Preliminary computations

P1. Model Components computation

• The script "ObsFile.scr" generates a data file with the following content:

<table>
<thead>
<tr>
<th>sta</th>
<th>sat</th>
<th>DoY</th>
<th>sec</th>
<th>P1</th>
<th>L1</th>
<th>P2</th>
<th>L2</th>
<th>Rho</th>
<th>Trop</th>
<th>Ion</th>
<th>elev</th>
<th>azim</th>
</tr>
</thead>
</table>

• Run this script for all receivers:

```
ObsFile.scr UPC10770.11o brdc0770.11n
ObsFile.scr UPC20770.11o brdc0770.11n
```

• Merge all files into a single file:

```
cat ?????.obs > ObsFile.dat
```
Selecting measurements: Time interval [18000:19900]

- To simplify computations, a time interval with always the same set of satellites in view and without cycle-slips is selected.
- Moreover an elevation mask of 10 degrees will be applied.

If the satellites change or cycle-slips appear during the data processing interval, care with the associated parameters handling must be taken in the navigation filter. Set up new parameters when new satellites appear and treat the ambiguities as constant between cycle-slips and white noise when a cycle-slip happens.
P. Preliminary computations

Selecting measurements: Time interval [18000:19900]

- Select the satellites in the time interval [18000:19900] with elevation over 10°

```
cat ObsFile.dat | gawk '{if ($4>=18000 && $4<=19900 && $12>10) print $0}' > obs.dat
```

- Reference satellite (over the time interval [18000:19900])

Confirm that the satellite PRN06 is the satellite with the highest elevation (this satellite will be used as the reference satellite)

```
obs.dat ➔
```

P1. Model components computation
P2. Double differences between receivers and satellites computation

The script "**DDobs.scr**" computes the double differences between receivers and satellites from file *obs.dat*. For instance, the following sentence:

```
DDobs.scr obs.dat UPC1 UPC2 06 03
```

generates the file

```
DD_{{sta1}}_{{sta2}}_{{sat1}}_{{sat2}}.dat
```

Where the elevation (EL) and azimuth (AZ) are taken from station #2.

and where (EL1, AZ1) are for satellite #1 and (EL1, AZ1) are for satellite #2.
P. Preliminary computations

Compute the double differences between receivers **UPC1** (reference) and **UPC2** and satellites **PRN06** (reference) and [PRN 03, 07, 16, 18, 19, 21, 22, 24]

DDobs.scr obs.dat	UPC1	UPC2	06	03
DDobs.scr obs.dat	UPC1	UPC2	06	07
DDobs.scr obs.dat	UPC1	UPC2	06	16
DDobs.scr obs.dat	UPC1	UPC2	06	18
DDobs.scr obs.dat	UPC1	UPC2	06	19
DDobs.scr obs.dat	UPC1	UPC2	06	21
DDobs.scr obs.dat	UPC1	UPC2	06	22
DDobs.scr obs.dat	UPC1	UPC2	06	24

Merge the files in a single file and sort by time:

```
cat DD_UPC1_UPC2_06_???.dat | sort -n -k +6 > DD_UPC1_UPC2_06_ALL.dat
```
Introduction: gLAB processing in command line.

Preliminary computations: Data files.

- Session A: Fixing DD ambiguities one at a time: UPC1-UPC2.

- Session B: Assessing the fixed ambiguities in navigation: Differential positioning of UPC1-UPC2 receivers.

- Session C: Fixing DD ambiguities with LAMBDA method.

Note: UPC1-UPC2 receivers baseline: 37.95 metres.
A. Fixing DD ambiguities one at a time: UPC1-UPC2

This exercise is devoted to study the ambiguity fixing using the *cascade method*, that is, fixing the ambiguities one at a time.

In the first part, we are going to assess this approach for a single frequency receiver, trying to fix DDN1 and DDN2 independently.

In the second part, we are going to assess this approach for dual frequency receivers, fixing first the wide-lane ambiguity DDNw and afterwards DDN1 and DDN2.

The results (i.e. the DDN1 and DDN2 ambiguities) will be assessed in the next “Session B” by computing the navigation solution using the carrier phases repaired with the fixed DDN1 and DDN2 ambig.

Finally, in Session C, the LAMBDA method will be applied for comparison.
Resolving ambiguities one at a Time: single Freq.

A simple trial would be (for instance using L1 and P1):

\[P_{1jk} = \rho_{1jk} + \nu_{P_1}^{jk} \]
\[L_{1jk} = \rho_{1jk} + \lambda_1 N_{1jk} + \nu_{L_1}^{jk} \]

\[\rightarrow L_{1jk} - P_{1jk} = \lambda_1 N_{1jk} + \nu^{jk}_{P_1} \rightarrow N_{1jk} = \left[\frac{L_{1jk} - P_{1jk}}{\lambda_1} \right] \text{roundoff} \]

\[\lambda_1 \approx 20 \text{ cm} \]
\[\sigma_{P_{1jk}} \approx 1 \text{ m} \]
\[\sigma_{L_{1jk}} \approx 1 \text{ cm} \]

To much error (5 wavelengths)!

\[\sigma_{\tilde{N}_{1jk}} \approx \frac{1}{\lambda_1} \sigma_{P_{1jk}} \approx 5 \]

Note that, assuming a Gaussian distribution of errors, guarantee only the 68% of success

As the ambiguity is constant (between cycle-slips), we would try to reduce uncertainty by averaging the estimate on time, but we will need 100 epochs to reduce noise up to \(\frac{1}{2} \) (but measurement errors are highly correlated on time!)

Similar results with \(L_2, P_2 \) measurements

@ J. Sanz & J.M. Juan
A1 Trying to fix ambiguities in Single frequency

A1.1 Fixing N1 and N2 independently:

Estimate graphically values of DDN1 and DDN2 (i.e. try to identify the true ambiguity from the plot).

Hint:

From file DD_UPC1_UPC2_06_ALL.dat, generate the file DDN1N2.dat with the following content:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRN</td>
<td>sec</td>
<td>DDN1</td>
<td>DDN2</td>
<td>nint(DDN1)</td>
<td>nint(DDN2)</td>
<td></td>
</tr>
</tbody>
</table>

where:

\[
\text{DDN1}=\left[\frac{\text{DDL1} - \text{DDP1}}{\lambda_1}\right] ; \quad \text{DDN2}=\left[\frac{\text{DDL2} - \text{DDP2}}{\lambda_2}\right]
\]

Note: "\text{nint}" means near-integer

Be careful: "\text{nint}" in \text{awk}: \text{nint(x)} must be generated as: \text{int(x+0.5*sign(x))}
A1 Trying to fix ambiguities in Single frequency

a) From file **DD_UPC1_UPC2_06_ALL.dat**, generate the file **DDN1N2.dat** with the following content:

<table>
<thead>
<tr>
<th>PRN</th>
<th>sec</th>
<th>DDN1</th>
<th>DDN2</th>
<th>nint(DDN1)</th>
<th>nint(DDN2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Execute, for instance:

```
gawk 'BEGIN{c=299792458;f0=10.23e+6;l1=c/(154*f0);l2=c/(120*f0)}
{A1=($8-$7)/l1; A2=($10-$9)/l2;if (A1!=0){signA1=A1/sqrt(A1*A1)}else{signA1=0};
if (A2!=0) {signA2=A2/sqrt(A2*A2)}else{signA2=0};
print $4,$6,A1,int(A1+0.5*signA1),A2,int(A2+0.5*signA2)}' DD_UPC1_UPC2_06_ALL.dat > DDN1N2.dat
```
A1 Trying to fix ambiguities in Single frequency

b) Plot DDN1 and DDN2 for the different satellites and discuss if the ambiguity DDN1 and DDN2 can be fixed:

<table>
<thead>
<tr>
<th>PRN</th>
<th>sec</th>
<th>DDN1</th>
<th>DDN2</th>
<th>nint(DDN1)</th>
<th>nint(DDN2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

b1) DDN1 plot:

```bash
graph.py -f DDN1N2.dat -x2 -y3 -c '($1==16)' -s. -f DDN1N2.dat -x2 -y4 -c '($1==16)'
-sx --cl r --yn -4 --yx 10 --xl "time (s)" --yl "cycles L1" -t "DDN1 ambiguity: PRN16"
```

b2) DDN2 plot:

```bash
graph.py -f DDN1N2.dat -x2 -y5 -c '($1==16)' -s. -f DDN1N2.dat -x2 -y6 -c '($1==16)'
-sx --cl r --yn -8 --yx 6 --xl "time (s)" --yl "cycles L2" -t "DDN2 ambiguity: PRN16"
```
Questions:
1. Explain what is the meaning of this plot.
2. Is it possible to identify the integer ambiguity?
3. How reliability can be improved?

A1. DDN1 and DDN2 in single frequency
A1 Trying to fix ambiguities in Single frequency

b2) DDN2 plot:

```
graph.py -f DDN1N2.dat -x2 -y5 -c '($1==16)' -s. -f DDN1N2.dat -x2 -y6 -c '($1==16)' -sx --cl r --yn -8 --yx 6 --xl "time (s)" --yl "cycles L2" -t "DDN2 ambiguity: PRN16"
```

Questions:
1. Explain what is the meaning of this plot.
2. Is it possible to identify the integer ambiguity?
3. How reliability can be improved?

A1. DDN1 and DDN2 in single frequency
A1 Trying to fix ambiguities in Single frequency

c) Make plots to analyze the DDP1 and DDP2 code noise.
Hint:
From file `DD_UPC1_UPC2_06_ALL.dat`, generate the file `P1P2noise.dat` with the following content:

```
gawk '{print $4,$6,$7-$11,$9-$11}' DD_UPC1_UPC2_06_ALL.dat > P1P2noise.dat
```

Execute, for instance:
A1 Trying to fix ambiguities in Single frequency

Questions:

Discuss why the ambiguities cannot be fixed by rounding-off the expression $\text{DDN1} = \frac{\text{DDL1} - \text{DDP1}}{\lambda_1}$
A1 Trying to fix ambiguities in Single frequency

C2) Depict the DDP2 code noise:

```
graph.py -f P1P2noise.dat -x2 -y4 -c '($1==16)' -so --yn -2 --yx 1.5 --xl "time (s)"
  --yl "metres" -t "DDP2 noise: PRN16"
```

Questions:

Discuss why the ambiguities cannot be fixed by rounding-off the expression $\text{DDN2} = \frac{\text{DDL2} - \text{DDP2}}{\lambda_2}$
d) Make plots to analyze the DDL1 and DDL2 carrier noise.
 Hint: From file **DD_UPC1_UPC2_06_ALL.dat**, generate the file **L1L2noise.dat** with the following content:

```
1 2 3 4 5
[PRN sec DDL1-DRrho DDL2-DRrho]
```

Execute, for instance:

```
gawk '{print $4,$6,$8-$11,$10-$11}' DD_UPC1_UPC2_06_ALL.dat > L1L2noise.dat
```
d1) Depict the DDL1 code noise:

```
graph.py -f L1L2noise.dat -x2 -y3 -c '($1==16)' -so --yn 0.38 --yx 0.40 --xl "time (s)"
--yl "metres" -t "DDL1 noise: PRN16"
```

Questions:

Discuss the plot.
What is the level of noise?

Compare the noise with the wavelength $\lambda_1 = 19.0$ cm
A1 Trying to fix ambiguities in Single frequency

d2) Depict the DDL2 code noise:

```bash
graph.py -f L1L2noise.dat -x2 -y4 -c'($1==16)' -so --yn -0.24 --yx -0.22 --xl "time (s)" --yl "metres" -t "DDL2 noise: PRN16"
```

Questions:

Discuss the plot.
What is the level of noise?

Compare the noise with the wavelength $\lambda_2 = 24.4\text{cm}$
Resolving ambiguities one at a Time: Dual Freq.

Dual frequency measurements: wide-laneing with the Melbourne-Wübbena combination

\[
P_{jk}^i = \rho_{jk}^i + v_{p_i}^{jk}
\]

\[
P_{jk}^N = \frac{f_1 P_{jk}^1 + f_2 P_{jk}^2}{f_1 + f_2} = \rho_{jk}^i + v_{p_N}^{jk}
\]

\[
L_{jk}^i = \rho_{jk}^i + \lambda_1 N_{1jk}^i + v_{l1}^{jk}
\]

\[
L_{jk}^2 = \rho_{jk}^i + \lambda_2 N_{2jk}^i + v_{l2}^{jk}
\]

\[
L_j^k = \frac{f_1 L_{jk}^1 - f_2 L_{jk}^2}{f_1 - f_2} = \rho_{jk}^i + \lambda W N_{Wjk}^i + v_{lW}^{jk}
\]

\[
L_{Wj} - P_{Nj}^i = \lambda W N_{Wjk}^i + v_{P_N}^{jk} \rightarrow \hat{N}_{Wj} = \left[\frac{L_{Wj} - P_{Nj}^i}{\lambda W} \right]_{\text{roundoff}}
\]

Fixing \(N_1 \) (after fixing \(N_W \))

\[
L_{jk}^1 - L_{jk}^2 = \lambda_1 N_{1jk}^i - \lambda_2 N_{2jk}^i + v_{l1-l2}^{jk}
\]

\[
= (\lambda_1 - \lambda_2) N_{1jk}^i + \lambda_2 N_{Wjk}^i + v_{l1-l2}^{jk}
\]

\[
\hat{N}_{1jk} = \left[\frac{L_{jk}^1 - L_{jk}^2 - \lambda_2 \hat{N}_{Wj}^i}{\lambda_1 - \lambda_2} \right]_{\text{roundoff}}
\]

\[
\hat{N}_{2jk} = \hat{N}_{1jk} - \hat{N}_{Wj}
\]

Now, with uncorrelated measurements from 10 epochs will reduce noise up to about \(\frac{1}{4} \).
A2.1 Fixing Wide-lane ambiguity (Nw):

Estimate graphically values of DDNw (i.e. try to identify the true ambiguity from the plot).

Hint:

From file DD_UPC1_UPC2_06_ALL.dat, generate the file DDNw.dat with the following content:

```
1 2 3 4
[PRN sec DDNw nint(DDNw)]
```

where: \(DDNw = \frac{DDL_W - DDP_N}{\lambda_W} \)

Note:

\[
L_W = \frac{\beta L_1 - L_2}{\beta - 1} ; \quad P_N = \frac{\beta P_1 + P_2}{\beta + 1} ; \quad \beta = \frac{f_1}{f_2} = \frac{154}{120} ; \quad \lambda_W = \frac{c}{f_1 - f_2} = 86.2cm
\]
A2 Dual Frequency Ambiguity Fixing

a) From file `DD_UPC1_UPC2_06_ALL.dat`, generate the file `DDNw.dat` with the following content:

```
1 2 3 4
[PRN sec DDNw nint(DDNw)]
```

where: \(\text{DDNw} = \frac{\text{DDL}_w - \text{DDP}_N}{\lambda_w} \)

Execute, for instance:

```
cat DD_UPC1_UPC2_06_ALL.dat | gawk 'BEGIN{s12=154/120}
{mw=(s12*$8-$10)/(s12-1)-(s12*$7+$9)/(s12+1);if(mw!=0){sign=mw/sqrt(mw*mw)}
else{sign=0};printf "%02i %i %14.4f %i \n", $4,$6, mw/0.862,int(mw/0.862+0.5*sign)}'
> DDNw.dat
```
A2 Dual Frequency Ambiguity Fixing

b) Plot DDNw for the different satellites and discuss if the ambiguity DDNw can be fixed:

```
1  2  3  4
[PRN  sec  DDNw  nint(DDNw)]
```

- Example PRN03 plot:

```
graph.py -f DDNw.dat -x2 -y3 -c '($1==03)' -s. -f DDNw.dat -x2 -y4 -c '($1==03)'
-sx --cl r --yn -1 --yx 7 --xl "time (s)" --yl "cycles Lw" -t "DDNw ambiguity: PRN03"
```

- Example PRN07 plot:

```
graph.py -f DDNw.dat -x2 -y3 -c '($1==07)' -s. -f DDNw.dat -x2 -y4 -c '($1==07)'
-sx --cl r --yn -4 --yx 4 --xl "time (s)" --yl "cycles Lw" -t "DDNw ambiguity: PRN07"
```
A2 Dual Frequency Ambiguity Fixing

```bash
graph.py -f DDNw.dat -x2 -y3 -c '($1==03)' -s. -f DDNw.dat -x2 -y4 -c '($1==03)'
-sx --cl r --yn -1 --yx 7 --xl "time (s)" --yl "cycles Lw" -t "DDNw ambiguity: PRN03"
```

PRN03 plot:

→ DDNw= 3 ?
A2 Dual Frequency Ambiguity Fixing

PRN07 plot:

→ DDNw= 0 ?
A2 Dual Frequency Ambiguity Fixing

The remaining plots:

```python
graph.py -f DDNw.dat -x2 -y3 -c '($1==16)' -s. -f DDNw.dat -x2 -y4 -c '($1==16)
-sx --cl r --yn -1 --yx 7 --xl "time (s)" --yl "cycles Lw" -t "DDNw ambiguity: PRN16"
```

```python
graph.py -f DDNw.dat -x2 -y3 -c '($1==18)' -s. -f DDNw.dat -x2 -y4 -c '($1==18)
-sx --cl r --yn -7 --yx 1 --xl "time (s)" --yl "cycles Lw" -t "DDNw ambiguity: PRN18"
```

```python
graph.py -f DDNw.dat -x2 -y3 -c '($1==19)' -s. -f DDNw.dat -x2 -y4 -c '($1==19)
-sx --cl r --yn -2 --yx 6 --xl "time (s)" --yl "cycles Lw" -t "DDNw ambiguity: PRN19"
```

```python
graph.py -f DDNw.dat -x2 -y3 -c '($1==21)' -s. -f DDNw.dat -x2 -y4 -c '($1==21)
-sx --cl r --yn 4 --yx 12 --xl "time (s)" --yl "cycles Lw" -t "DDNw ambiguity: PRN21"
```

```python
graph.py -f DDNw.dat -x2 -y3 -c '($1==22)' -s. -f DDNw.dat -x2 -y4 -c '($1==22)
-sx --cl r --yn -4 --yx 4 --xl "time (s)" --yl "cycles Lw" -t "DDNw ambiguity: PRN22"
```

```python
graph.py -f DDNw.dat -x2 -y3 -c '($1==24)' -s. -f DDNw.dat -x2 -y4 -c '($1==24)
-sx --cl r --yn 0 --yx 8 --xl "time (s)" --yl "cycles Lw" -t "DDNw ambiguity: PRN24"
```

A2. 1 Fixing Wide-lane ambiguity DDNw
A2 Dual Frequency Ambiguity Fixing

A2.1 Fixing Wide-lane ambiguity DDNw
A2 Dual Frequency Ambiguity Fixing

A.2.2 Smoothing the DDNw:
Smooth the DDNw with a 300 seconds sliding window, in order to improve the ambiguity fixing.

Hint: From file `DD_UPC1_UPC2_06_ALL.dat`, generate the file `DDNws.dat` with the content:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRN</td>
<td>sec</td>
<td>DDNw</td>
<td>DDNws</td>
<td>nint(DDNw)</td>
<td>nint(DDNws)</td>
</tr>
</tbody>
</table>

Execute, for instance (to smooth the DDNw):

```
cat DDNw.dat | gawk '{dt=300;for (j=0;j<dt;j++) {t=j+dt/2+int((2-j)/dt)*dt;ind=$1"t"; n[ind]++;v[ind]=$3;m[ind]=m[ind]+$3}}' | sort -n -k+1 > DDNws.tmp
```

Estimate again the ambiguity from the raw DDNw and smoothed DDNws:

```
cat DDNws.tmp | gawk '{sign3=$3/sqrt($3*$3);sign4=$4/sqrt($4*$4); print $1,$2,$3,$4,int($3+0.5*sign3),int($4+0.5*sign4)}' > DDNws.dat
```
A2 Dual Frequency Ambiguity Fixing

b) Plot DDNw and DDNws for the different satellites and discuss if the ambiguity DDNw can be fixed:

- Example: PRN03 plot:

```
graph.py -f DDNws.dat -x2 -y3 -c '($1==03)' -s.
   -f DDNws.dat -x2 -y5 -c '($1==03)' -sx --cl r
   -f DDNws.dat -x2 -y4 -c '($1==03)' -s. --cl g
   -f DDNws.dat -x2 -y6 -c '($1==03)' -sx --cl m
   --yn 0 --yx 6 --xl "time (s)" --yl "cycles Lw" -t "DDNw ambig. PRN03"
```
A2 Dual Frequency Ambiguity Fixing

graph.py -f DDNws.dat -x2 -y3 -c '($1==03)' -s.
 -f DDNws.dat -x2 -y5 -c '($1==03)' -sx --cl r
 -f DDNws.dat -x2 -y4 -c '($1==03)' -s. --cl g
 -f DDNws.dat -x2 -y6 -c '($1==03)' -sx --cl m
--yn 0 --yx 6 --x1 "time (s)" --yl "cycles Lw" -t "DDNw ambig. PRN03"

PRN03 plot:

⇒ DDNw=3
A2 Dual Frequency Ambiguity Fixing

PRN07 plot:

→ DDNw=0
A2 Dual Frequency Ambiguity Fixing

```python
graph.py -f DDNws.dat -x2 -y3 -c '($1==16)' -s.
-f DDNws.dat -x2 -y5 -c '($1==16)' -sx --cl r
-f DDNws.dat -x2 -y4 -c '($1==16)' -s. --cl g
-f DDNws.dat -x2 -y6 -c '($1==16)' -sx --cl m
--yn 0 --yx 6 --x1 "time (s)" --yl "cycles Lw" -t "DDNw ambig. PRN16"
```

PRN16 plot:

⇒ DDNw=3
A2 Dual Frequency Ambiguity Fixing

graph.py -f DDNws.dat -x2 -y3 -c \'$1==18\$\' -s.
 -f DDNws.dat -x2 -y5 -c \'$1==18\$\' -sx --cl r
 -f DDNws.dat -x2 -y4 -c \'$1==18\$\' -s. --cl g
 -f DDNws.dat -x2 -y6 -c \'$1==18\$\' -sx --cl m
 --yn -6 --yx 0 --xl "time (s)" --yl "cycles Lw" -t "DDNw ambig. PRN18"

PRN18 plot:

⇒ DDNw=-3
A2 Dual Frequency Ambiguity Fixing

```
graph.py -f DDNws.dat -x2 -y3 -c '($1==19)' -s.
       -f DDNws.dat -x2 -y5 -c '($1==19)' -sx --cl r
       -f DDNws.dat -x2 -y4 -c '($1==19)' -s. --cl g
       -f DDNws.dat -x2 -y6 -c '($1==19)' -sx --cl m
       --yn -1 --yx 5 --xl "time (s)" --yl "cycles Lw" -t "DDNw ambig. PRN19"
```

PRN19 plot:

⇒ DDNw=2
A2 Dual Frequency Ambiguity Fixing

PRN21 plot:

⇒ DDNw=8
A2 Dual Frequency Ambiguity Fixing

PRN22 plot:

⇒ DDNw=0
A2 Dual Frequency Ambiguity Fixing

PRN24 plot:

\[\Rightarrow \text{DDNw}=4 \]
A2.2 Fixing DDN1 from DDNw and DDL1, DDL2

Using the previous DDNw fixed values, estimate graphically the DDN1 ambiguity (i.e. try to identify the true ambiguity from the plot).

Hint:

From file `DD_UPC1_UPC2_06_ALL.dat`, and using the fixed DDNw, generate the file `DDN1.dat` with the following content:

<table>
<thead>
<tr>
<th>PRN</th>
<th>sec</th>
<th>DDN1</th>
<th>nint(DDN1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
</tr>
</tbody>
</table>

where:

\[
DDN1 = \frac{DDL1 - DDL2 - \lambda_2 \text{ DDNw}}{\lambda_1 - \lambda_2}
\]

<table>
<thead>
<tr>
<th>PRN</th>
<th>03</th>
<th>07</th>
<th>16</th>
<th>18</th>
<th>19</th>
<th>21</th>
<th>22</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDNw</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>-3</td>
<td>2</td>
<td>8</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

@ J. Sanz & J.M. Juan
A2 Dual Frequency Ambiguity Fixing

From file **DD_UPC1_UPC2_06_ALL.dat**, and using the fixed DDNw, generate the file **DDN1.dat** with the following content:

where:

\[DDN1 = \frac{(DDL1 - DDL2 - \lambda_2 \cdot DDNw)}{(\lambda_1 - \lambda_2)} \]

Execute, for instance for PRN 24 (with DDNw=4):

```
gawk 'BEGIN{c=299792458;f0=10.23e+6;f1=154*f0;f2=120*f0;l1=c/f1;l2=c/f2}
   {Nw=4;if ($4==24) {amb=($8-$10-12*Nw)/(l1-l2);
    print $4,$6,amb,int(amb+0.5*amb/sqrt(amb*amb))}}' DD_UPC1_UPC2_06_ALL.dat  > DDN1_PRN24
```
A2 Dual Frequency Ambiguity Fixing

graph.py -f DDN1_PRN24 -x2 -y3 -c '($1==24)' -s.
 -f DDN1_PRN24 -x2 -y4 -c '($1==24)' -sx
 --cl r --yn 1 --yx 6 --xl "time (s)"
 --yl "cycles L1" -t "DDN1 ambiguity: PRN24"

PRN24 plot:

⇒ DDN1=4
From file **DD_UPC1_UPC2_06_ALL.dat**, and using the fixed DDNw, generate the file **DDN1.dat** with the following content:

<table>
<thead>
<tr>
<th>PRN</th>
<th>sec</th>
<th>DDN1 nint(DDN1)</th>
</tr>
</thead>
</table>

Other possibility is to execute the following sentence to generate the file for all satellites:

```bash
gawk 'BEGIN{for (i=0;i<100;i++) {getline <"sat.ambNw";Nw[$1*1]=$2}}
{c=299792458;f0=10.23e+6;f1=154*f0;f2=120*f0;l1=c/f1;l2=c/f2}
{amb=($8-$10-$12*Nw[$4*1])/(l1-l2);if (amb!=0){sign=amb/sqrt(amb*amb)} else{sign=0};
print $4,$6,amb,int(amb+0.5*sign)}' DD_UPC1_UPC2_06_ALL.dat > DDN1.dat
```

Where **sat.ambNw** is a file containing the DDNw ambiguities:

```
03  3
07  0
16  3
18 -3
19  2
21  8
22  0
24  4
```
A2 Dual Frequency Ambiguity Fixing

graph.py -f DDN1_PRN24 -x2 -y3 -c '($1==03)' -s.
 -f DDN1_PRN24 -x2 -y4 -c '($1==03)' -sx
--cl r --yn -1 --yx 4 --xl "time (s)"
--yl "cycles L1" -t "DDN1 ambiguity: PRN03"

PRN03 plot:

⇒ DDN1=2
A2 Dual Frequency Ambiguity Fixing

PRN07 plot:

→ DDN1=1
A2 Dual Frequency Ambiguity Fixing

PRN16 \Rightarrow DDN1=2

PRN18 \Rightarrow DDN1=-1

PRN19 \Rightarrow DDN1=4

PRN21 \Rightarrow DDN1=7

PRN22 \Rightarrow DDN1=1

PRN24 \Rightarrow DDN1=4
A2.3 Fixing DDN2

Using the previous DDNw and DDN1 ambiguities fixed, fix the DDN2 ambiguity:

Hint: The DDN2 can be easily computed by: \(\text{DDN2} = \text{DDN1} - \text{DDNw} \)

Then:

\[
\text{DDN2} = [-1 \ 1 \ -1 \ 2 \ 2 \ -1 \ 1 \ 0]
\]
Introduction: gLAB processing in command line.

Preliminary computations: Data files.

Session A: Fixing DD ambiguities one at a time: UPC1-UPC2.

Session B: Assessing the fixed ambiguities in navigation: Differential positioning of UPC1-UPC2 receivers.

Session C: Fixing DD ambiguities with LAMBDA method.

Note: UPC1-UPC2 receivers baseline: 37.95 metres.
Session B

Assessing the fixed ambiguities in navigation: Differential positioning of UPC1-UPC2 receivers

(baseline: 37.95 metres)
B. Assessing the fixed ambiguities in navigation

- The DDN1 and DDN2 ambiguities have been fixed in the previous Session A using the “cascade method”.

- The obtained results (i.e. the DDN1 and DDN2 ambiguities) will be assessed in this Session B by computing the navigation solution using the carrier phases repaired with the fixed DDN1 and DDN2 ambiguities.

- Finally, in next Session C, the ambiguities will be fixed using the LAMBDA method and the performance with the cascade method will be compared.
After repairing the carrier ambiguities, these measurements will be used to navigate.

Indeed, once the integer ambiguities are known, the carrier phase measurements become like “unambiguous pseudoranges”, accurate at the centimetre level or better.

Thence, the positioning is straightforward following the same procedure as with pseudoranges.

Nevertheless, a wrong ambiguity fix can degrade the position solution significantly.
B. Repairing the DDL1 and DDL2 with the ambiguities fixed

B1. Repair the DDL1 and DDL2 carrier measurements with the DDN1 and DDN2 ambiguities FIXED and plot results to analyze the data.

Write in it the DDN1 and DDN2 ambiguities fixed in previous exercise in file N1N2.dat.

Using the previous file N1N2.dat and "DD_UPC1_UPC2_06_ALL.dat", generate a file with the following content:

```
----------------------------
DD_UPC1_UPC2_06_ALL.fixL1L2-------------------------------------
1    2   3   4   5   6    7    8    9   10    11   12    13    14  15  16  17
18     19
[ UPC1 UPC2 06 PRN DoY sec DDP1 DDL1 DDP2 DDL2 DDRho DDTrop DDIon El1 Az1 El2 Az2 λ_1 DDN1 λ_2 DDN2] <---- UPC2 ----> 
```

Note: This file is identical to file "DD_UPC1_UPC2_06_ALL.dat", but with the ambiguities added in the last fields #18 and #19.
B. Repairing the **DDL1** and **DDL2** with the ambiguities fixed

a) From previous file, generate a the file "sat.ambL1L2" with the following content:

```
gawk 'BEGIN{c=299792458;f0=10.23e+6;l1=c/(154*f0);l2=c/(120*f0)}
{printf "%02i %3i %3i %14.4f %14.4f \n", $1,$2,$3,$2*l1,$3*l2}' N1N2.dat > sat.ambL1L2
```

b) Generate the "DD_UPC1_UPC2_06_30.fixL1L2" file:

```
cat DD_UPC1_UPC2_06_ALL.dat|
gawk 'BEGIN{for (i=1;i<1000;i++) {getline <"sat.ambL1L2";A1[$1]=$4;A2[$1]=$5}}
{printf "%s %02i %02i %s %14.4f \n", $1,$2,$3,$4,$5,$6,$7,$8,$9,$10,$11,$12,$13,$14,$15,$16,$17,A1[$4], A2[$5]}' > DD_UPC1_UPC2_06_ALL.fixL1L2
```
B. Repairing the **DDL1** and DDL2 with the ambiguities fixed

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPC1</td>
<td>UPC2</td>
<td>06</td>
<td>PRN</td>
<td>DoY</td>
<td>sec</td>
<td>DDP1</td>
<td>DDL1</td>
<td>DDP2</td>
<td>DDL2</td>
<td>DDRho</td>
<td>DDTrop</td>
<td>DDIon</td>
<td>El1</td>
<td>Az1</td>
<td>El2</td>
<td>Az2</td>
<td>λ1</td>
<td>DDN1</td>
</tr>
</tbody>
</table>

<---- UPC2 ---->

c) Make and discuss the following plots for DDL1

```bash
graph.py -f DD_UPC1_UPC2_06_ALL.fixL1 -x6 -y'($8-$18-$11)'
   -so --yn -0.06 --yx 0.06 -l "(DDL1-\lambda1*DDN1)-DDrho" --xl "time (s)" --yl "m"
```

```bash
graph.py -f DD_UPC1_UPC2_06_ALL.fixL1 -x6 -y'($8-$11)'
   -so --yn -5 --yx 5 -l "(DDL1)-DDrho" --xl "time (s)" --yl "metres"
```

```bash
graph.py -f DD_UPC1_UPC2_06_ALL.fixL1 -x6 -y'($8-$18)'
   -so --yn -20 --yx 20 -l "(DDL1-\lambda1*DDN1)" --xl "time (s)" --yl "metres"
```
B. Repairing the **DDL1** and **DDL2** with the ambiguities fixed

Questions:

Explain what is the meaning of this plot.

```python
graph.py -f DD_UPC1_UPC2_06_ALL.fixL1
-x6 -y'($8-$18-$11)'
-so --yn -0.06 --yx 0.06
-1 "(DDL1-$\lambda_1$ DDN1)-DDrho"
--xl "time (s)" --yl "m"
```
B. Repairing the **DDL1** and DDL2 with the ambiguities fixed

```python
graph.py -f DD_UPC1_UPC2_06_ALL.fixL1L2
-x6 -y'($8-$11)'
-so --yn -5 --yx 5
-l "DDL1-DDrho"
--xl "time (s)" --yl "m"
```

Questions:
Explain what is the meaning of this plot.
B. Repairing the DDL1 and DDL2 with the ambiguities fixed

$$\text{graph.py -f DD_UPC1_UPC2_06_ALL.fixL1L2 -x6 -y'(8-18)' -so --yn -20 --yx 20 -l "(DDL1-\lambda_1 DDN1)" --xl "time (s)" --yl "m" }$$

Questions:
1.- Explain what is the meaning of this plot.
2.- Why a trend and a discontinuity appears?
B. Repairing the DDL1 and **DDL2** with the ambiguities fixed

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPC1</td>
<td>06</td>
<td>PRN</td>
<td>DoY</td>
<td>sec</td>
<td>DDP1</td>
<td>DDL1</td>
<td>DDP2</td>
<td>DDL2</td>
<td>DDRho</td>
<td>DDTrop</td>
<td>DDIon</td>
<td>El1</td>
<td>Az1</td>
<td>El2</td>
<td>Az2</td>
<td>(\lambda_1\ DDN1)</td>
<td>(\lambda_2\ DDN2)</td>
<td>----</td>
<td>UPC2</td>
</tr>
</tbody>
</table>

d) Make and discuss the following plots for DDL2

```bash
graph.py -f DD_UPC1_UPC2_06_ALL.fixL1 -x6 -y'($10-$19-$11)'
   -so --yn -0.06 --yx 0.06 -l "(DDL2-\lambda_2*DDN2)-DDrho" --xl "time (s)" --yl "m"
```

```bash
graph.py -f DD_UPC1_UPC2_06_ALL.fixL1 -x6 -y'($10-$11)'
   -so --yn -5 --yx 5 -l "(DDL2)-DDrho" --xl "time (s)" --yl "metres"
```

```bash
graph.py -f DD_UPC1_UPC2_06_ALL.fixL1 -x6 -y'($10-$19)'
   -so --yn -20 --yx 20 -l "(DDL2-\lambda_2*DDN2)" --xl "time (s)" --yl "metres"
```
B. Repairing the DDL1 and DDL2 with the ambiguities fixed

Questions:
Explain what is the meaning of this plot.
B. Repairing the DDL1 and DDL2 with the ambiguities fixed

Questions:
Explain what is the meaning of this plot.

graph.py -f DD_UPC1_UPC2_06_ALL.fixL1L2
-x6 -y'($9-$11)'
-so --yn -5 --yx 5
-l "DDL2-DDrho"
--xl "time (s)" --yl "m"

B1. Plotting the repaired DDL2
B. Repairing the DDL1 and DDL2 with the ambiguities fixed

Questions:
1. Explain what is the meaning of this plot.
2. Why a trend and a discontinuity appears?

graph.py -f DD_UPC1_UPC2_06_ALL.fixL1L2
-x6 -y'($9-$198)'
-so --yn -20 --yx 20
-l "(DDL2-λ_2 DDN2)"
--xl "time (s)" --yl "m"

B1. Plotting the repaired DDL2
After repairing the carrier ambiguities, these measurements will be used to navigate.

Indeed, once the integer ambiguities are known, the carrier phase measurements become like “unambiguous pseudoranges”, accurate at the centimetre level or better.

Thence, the positioning is straightforward following the same procedure as with pseudoranges.

Nevertheless, a wrong ambiguity fix can degrade the position solution significantly.
In this exercise we will consider an implementation of differential positioning where the user estimates the baseline vector using the time-tagged measurements of the reference station.

This approach is usually referred to as relative positioning and can be applied in some applications where the coordinates of the reference station are not accurately known and where the relative position vector between the reference station and the user is the main interest. Examples are formation flying, automatic landing on ships...

Of course, the knowledge of the reference receiver location would allow the user to compute its absolute coordinates.

This is a simple approach, where synchronism delays between the time tag measurements of the reference station and the user must be taken into account for real-time positioning.
B2.1 UPC1-UPC2 Baseline vector estimation with DDL1 carrier

(using the time-tagged reference station measurements)

Data file

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19													
[UPC1	UPC2	06	PRN	DoY	sec	DDP1	DDL1	DDP2	DDL2	DDRho	DDTrop	DDIon	El1	Az1	El2	Az2	λ₁	DDN1	λ₂	DDN2]											

Where the elevation (EL) and azimuth (AZ) are taken from station **UPC2** (the user)

and where, (EL₁, AZ₁) are for satellite PNR06 (reference) and (EL₁, AZ₁) are for satellite PRNXX

Measurements broadcast by the reference station.
Estimate the baseline vector between UPC1 and UPC2 receivers using the code measurements of file (DD_UPC1_UPC2_06_ALL.dat). Note: Use the entire file (i.e. time interval [18000:19900]).

$$[\text{DDL}_1 - \lambda_1 \text{DDN}_1] = [\text{Los}_k - \text{Los}_06] \times \text{[baseline]}$$

Notation

$$\text{DDL}_1^{k,j} \equiv \text{DDL1 (involving satellites } j \text{ and } k)$$

$$\text{DDL}_1^{k,j} = \text{DL}_{1,usr}^{k,j} - \text{DL}_{1,ref}^{k,j}$$

$$= (\text{L}_{1,usr}^j - \text{L}_{1,usr}^k) - (\text{L}_{1,ref}^j - \text{L}_{1,ref}^k)$$

$L_{1,ref}^j$ Measurements broadcast by the reference station.
Estimate the baseline vector between UPC1 and UPC2 receivers using the code measurements of file (DD_UPC1_UPC2_06_ALL.dat).

Note: Use the entire file (i.e. time interval [18000:19900]).

\[
[DNL1 - \lambda_1 DDN1] = [\text{Los}_k - \text{Los}_06] \times [\text{baseline}]
\]

Notation

\[
\begin{bmatrix}
DNL1_{6,03} - \lambda_1 DDN1_{6,03} \\
DNL1_{6,07} - \lambda_1 DDN1_{6,07} \\
\vdots \\
DNL1_{6,24} - \lambda_1 DDN1_{6,24}
\end{bmatrix} = \begin{bmatrix}
-\left(\hat{\rho}^3 - \hat{\rho}^6\right)^T \\
\vdots \\
-\left(\hat{\rho}^{24} - \hat{\rho}^6\right)^T
\end{bmatrix} \times [\text{baseline}]
\]

\(r \) \equiv \text{Baseline vector}

\(DNL1^k_j \equiv \text{DDL1(involving satellites } j \text{ and } k) \)

\(\hat{\rho}^k \equiv \text{Line-Of-Sight unit vector to satellite } k \)

\(\hat{\rho}^k \equiv [\cos(El_k) \sin(Az_k), \cos(El_k) \cos(Az_k), \sin(El_k)] \)
Using the DDL1 carrier with the ambiguities FIXED, compute the LS single epoch solution for the whole interval 180000 < t < 199000 with the program LS.f.

Note: The program LS.f computes the Least Square solution for each measurement epoch of the input file (see the FORTRAN code LS.f).

The following procedure can be applied:

a) generate a file with the following content:

```
[Time], [DDL1 - \lambda_1 DDN1], [Los_k - Los_06]
```

where:

- **Time** = seconds of day
- **DDL1 - \lambda_1 DDN1** = Prefit residuals (i.e., "y" values in program LS.f)
- **Los_k - Los_06** = The three components of the geometry matrix (i.e., matrix "a" in program LS.f)
Justify that the next sentence builds the navigation equations system

\[
[D\text{DL1} - \lambda_1 D\text{DN1}] = [\text{Los}_k - \text{Los}_06] \cdot [\text{baseline}]
\]

See file content in slide #31

\[
\begin{bmatrix}
D\text{DL1}_6,03 - \lambda_1 D\text{DN1}_6,03 \\
D\text{DL1}_6,07 - \lambda_1 D\text{DN1}_6,07 \\
\vdots \\
D\text{DL1}_6,24 - \lambda_1 D\text{DN1}_6,24
\end{bmatrix}
\begin{bmatrix}
-(\hat{\rho}^3 - \hat{\rho}^6)^T \\
-(\hat{\rho}^7 - \hat{\rho}^6)^T \\
\vdots \\
-(\hat{\rho}^{24} - \hat{\rho}^6)^T
\end{bmatrix}
\begin{bmatrix}
\text{Los}_k - \text{Los}_06
\end{bmatrix}
\]

\[
\hat{\rho}^k \equiv \begin{bmatrix}
\cos(\text{El}_k \sin(\text{Az}_k)) & \cos(\text{El}_k \cos(\text{Az}_k)) & \sin(\text{El}_k)
\end{bmatrix}
\]

\[
\begin{bmatrix}
-3.3762 \\
-7.1131 \\
4.3881
\end{bmatrix}
\begin{bmatrix}
0.3398 & -0.1028 & 0.0714 \\
0.1725 & 0.5972 & 0.0691 \\
-0.6374 & 0.0227 & 0.2725
\end{bmatrix}
\]
B2.1 UPC1-UPC2 Baseline vector estimation with DDL1 carrier (using the time-tagged reference station measurements)

The following sentence can be used:

```bash
cat DD_UPC1_UPC2_06_ALL.fixL1L2 | gawk 'BEGIN{g2r=atan2(1,1)/45}
{e1=$14*g2r;a1=$15*g2r;e2=$16*g2r;a2=$17*g2r;printf "%s %14.4f
%8.4f %8.4f %8.4f
\n",
$6,$8-$18,-cos(e2)*sin(a2)+cos(e1)*sin(a1),
-cos(e2)*cos(a2)+cos(e1)*cos(a1),-sin(e2)+sin(e1)}' > L1model.dat
```

b) Compute the Least Squares solution:

```bash
cat L1model.dat |LS > L1fix.pos
```
B2.1 UPC1-UPC2 Baseline vector estimation with DDL1 carrier (using the time-tagged reference station measurements)

Plot the baseline estimation error:

```
graph.py -f L1fix.pos -x1 -y'($2+27.4170)' -s.- -l "North error"
-f L1fix.pos -x1 -y'($3+26.2341)' -s.- -l "East error"
-f L1fix.pos -x1 -y'($4+ 0.0304)' -s.- -l "UP error"
--yn -.1 --yx .1 --xl "time (s)" --yl "error (m)" -t "Baseline error"
```

Note: An accurate estimate of baseline is:

```
bsl_enu =[-27.4170 -26.2341 -0.0304]
```

Use this determination to assess the baseline vector estimation error.
L1 Baseline estimation error after fixing ambiguities

Questions:
1. What is the expected accuracy when positioning with carrier after fixing ambiguities?
2. Discuss why a trend and a discontinuity appears?
In the previous exercise we have considered an implementation of differential positioning where the user estimates the baseline vector from the time-tagged measurements of the reference station.

In the next exercises, we will consider the common implementation of Differential positioning, where the reference receiver coordinates are accurately known and used to compute range corrections for each tracked satellite in view. Then, the user applies these corrections to improve the positioning.

Unlike in the previous implementation, the synchronism errors between the time-tagged measurements will be not critical in this approach, as the differential corrections vary slowly.
B2.2. UPC1-UPC2 differential positioning with DDL1 carrier (using the computed differential corrections)

Using code DDL1 measurements, estimate the coordinates of receiver UPC2 taking UPC1 as a reference receiver.

Justify that the associated equations system is given by:

\[
[\text{DDL1} - \text{DDRho} - \lambda_1 \text{DDN1}] = [\text{Los}_k - \text{Los}_06] \ast [\text{dr}]
\]

Notation

\[
\begin{bmatrix}
\text{DDL}^{6.03}_1 - \text{DD} \rho^{6.03}_1 - \lambda_1 \text{DDN}_1 \\
\text{DDL}^{6.07}_1 - \text{DD} \rho^{6.07}_1 - \lambda_1 \text{DDN}_1 \\
\vdots \\
\text{DDL}^{6.24}_1 - \text{DD} \rho^{6.30}_1 - \lambda_1 \text{DDN}_1
\end{bmatrix} =
\begin{bmatrix}
-(\hat{\rho}^3 - \hat{\rho}^6)^T \\
-(\hat{\rho}^7 - \hat{\rho}^6)^T \\
\vdots \\
-(\hat{\rho}^{24} - \hat{\rho}^6)^T
\end{bmatrix} \times [\text{dr}]
\]

\[
\text{dr} = r_{\text{IND3}} - r_{0,\text{IND3}}
\]

\[
\text{DDL}_1^{kj} \equiv \text{DDL1}(\text{involving satellites } j \text{ and } k)
\]

\[
\hat{\rho}^k \equiv \text{Line-Of-Sight unit vector to satellite } k
\]

\[
\hat{\rho}^k = \begin{bmatrix}
\cos(El_k) \sin(Az_k) & \cos(El_k) \cos(Az_k) & \sin(El_k)
\end{bmatrix}
\]
Using code DDL1 measurements, estimate the coordinates of receiver UPC2 taking UPC1 as a reference receiver.

Justify that the associated equations system is given by:

\[
[D\text{DL}1 - D\text{DRho} - \lambda_1 D\text{DN}1] = [\text{Los}_k - \text{Los}_06] \cdot [\text{dr}]
\]

Notation

\[
\begin{align*}
D\text{DL}_{1j} & \equiv \text{DDLL}(\text{involving satellites } j \text{ and } k) \\
D\text{DL}_{1j} - D\rho_{1j} & = D\left(L_{1,\text{usr}}^j - \rho_{\text{usr}}^j \right) - D\left(L_{1,\text{ref}}^j - \rho_{\text{ref}}^j \right) \\
& = \left(L_{1,\text{usr}}^j - \rho_{\text{usr}}^j \right) - \left(L_{1,\text{usr}}^k - \rho_{\text{usr}}^k \right) - \left(L_{1,\text{ref}}^j - \rho_{\text{ref}}^j \right) - \left(L_{1,\text{ref}}^k - \rho_{\text{ref}}^k \right)
\end{align*}
\]

\[
\begin{align*}
\text{PRC}_{L1,j} & \equiv \hat{L}_{1,\text{ref}}^j - \rho_{\text{ref}}^j
\end{align*}
\]

Computed corrections broadcast by the reference station.
Using code DDL1 measurements, estimate the coordinates of receiver UPC2 taking UPC1 as a reference receiver.

Justify that the associated equations system is given by:

\[
[DML1- DDRho- \lambda_1 DDN1] = [Los_k - Los_06] \cdot [dr]
\]

\[
\begin{bmatrix}
DML1^{6.03} - DD \rho^{6.03} - \lambda_1 DDN1 \\
DML1^{6.07} - DD \rho^{6.07} - \lambda_1 DDN1 \\
\vdots \\
DML1^{6.24} - DD \rho^{6.30} - \lambda_1 DDN1
\end{bmatrix}
= \begin{bmatrix}
-(\hat{\rho}^3 - \hat{\rho}^6)^T \\
-(\hat{\rho}^7 - \hat{\rho}^6)^T \\
\vdots \\
-(\hat{\rho}^{24} - \hat{\rho}^6)^T
\end{bmatrix} \cdot [dr]
\]

\[
\hat{\rho}^j = \begin{bmatrix}
\cos(El_j) \sin(Az_j), \\
\cos(El_j) \cos(Az_j), \\
\sin(El_j)
\end{bmatrix}
\]
B2.2. UPC1-UPC2 differential positioning with DDL1 carrier (using the computed differential corrections)

Justify that the next sentence builds the navigation equations system

\[
[D_{DL1} - DDRho - \lambda_1 DDN1] = \begin{bmatrix} \text{Los}_k - \text{Los}_06 \end{bmatrix} \times [dr]
\]

\[
\text{cat } \text{DD_UPC1_UPC2_06_ALL_fixL1L2 } | \text{ gawk 'BEGIN{g2r=atan2(1,1)/45}
\{e1=$14\times g2r; a1=$15\times g2r; e2=$16\times g2r; a2=$17\times g2r;
\text{printf "\%s \%14.4f \%8.4f \%8.4f \%8.4f \n",}
\text{$6, $8-$11-$18, -cos(e2)*sin(a2)+cos(e1)*sin(a1),}
\text{-cos(e2)*cos(a2)+cos(e1)*cos(a1), -sin(e2)+sin(e1)}\}' > M.dat
\]

See file content in slide #43

\[
\begin{bmatrix}
D_{DL1}^{5.03} - D\rho^{6.03} - \lambda_1 D\rho^{7.03} - \lambda_1 D\rho^{7.07} - \lambda_1 D\rho^{6.24} - \lambda_1 D\rho^{6.24} - \lambda_1 D\rho^{6.24} - \lambda_1 D\rho^{6.24} - \lambda_1 D\rho^{6.24}
\end{bmatrix}
= \begin{bmatrix}
(\hat{\rho}^3 - \hat{\rho}^6)^T
(\hat{\rho}^7 - \hat{\rho}^6)^T
\vdots
(\hat{\rho}^{24} - \hat{\rho}^6)^T
\end{bmatrix} \times r
\]

\[
[D_{DL1} - DDRho - \lambda_1 DDN1] \quad \begin{bmatrix} \text{Los}_k - \text{Los}_06 \end{bmatrix} =
\begin{bmatrix}
-3.3762
-7.1131
4.3881
\end{bmatrix}
\]

\[
\hat{\rho}^k = \begin{bmatrix}
\cos(El_k) \sin(Az_k), \ \cos(El_k) \cos(Az_k), \ \sin(El_k)
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.3398
-0.1028
0.0714
0.1725
0.5972
0.0691
-0.6374
0.0227
0.2725
\end{bmatrix}
\]
B2.2. UPC1-UPC2 differential positioning with DDL1 carrier (using the computed differential corrections)

The following sentence can be used

```
cat DD_UPC1_UPC2_06_ALL.fixL1L2 | gawk 'BEGIN{g2r=atan2(1,1)/45}
{e1=$14*g2r;a1=$15*g2r;e2=$16*g2r;a2=$17*g2r;printf "%s %14.4f %8.4f %8.4f %8.4f
\n",$6,$8-$11-$18,-cos(e2)*sin(a2)+cos(e1)*sin(a1),-
-cos(e2)*cos(a2)+cos(e1)*cos(a1),-sin(e2)+sin(e1)}' > L1model.dat
```

b) Compute the Least Squares solution

```
cat L1model.dat |LS > L1fix.pos
```
B2.2. UPC1-UPC2 differential positioning with DDL1 carrier (using the computed differential corrections)

Plot the absolute positioning error:

```bash
graph.py -f L1fix.pos -x1 -y2- s.- -l "North error"
-f L1fix.pos -x1 -y3 -s.- -l "East error"
-f L1fix.pos -x1 -y4 -s.- -l "UP error"
--yn -.1 --yx .1 --xl "time (s)" --yl "error (m)"
-t "Absolute positioning error with DDL1"
```
L1 Differential positioning after fixing ambiguities

Questions:
Discuss why the results have improved, achieving centimetre level navigation.

B2.2. UPC1-UPC2 differential positioning with DDL1 carrier (using the computed differential corrections)
B2.3. UPC1-UPC2 differential positioning with DDL2 carrier
(using the computed differential corrections)

Repeat the previous positioning, but with the DDL2 carrier

The following sentence can be used

```
cat DD_UPC1_UPC2_06_ALL.fixL1L2 | gawk 'BEGIN{g2r=atan2(1,1)/45}
{e1=$14*g2r;a1=$15*g2r;e2=$16*g2r;a2=$17*g2r;printf "%s %14.4f
%8.4f %8.4f %8.4f
\n",$6,$9-$11-$19,-cos(e2)*sin(a2)+cos(e1)*sin(a1),
-cos(e2)*cos(a2)+cos(e1)*cos(a1),-sin(e2)+sin(e1)}' > L2model.dat
```

Compute the Least Squares solution

```
cat L2model.dat |LS > L2fix.pos
```
B2.3. UPC1-UPC2 differential positioning with DDL2 carrier (using the computed differential corrections)

Plot the absolute positioning error:

```
graph.py -f L2fix.pos -x1 -y2 -s.- -l "North error"
-f L2fix.pos -x1 -y3 -s.- -l "East error"
-f L2fix.pos -x1 -y4 -s.- -l "UP error"
--yn -.1 --yx .1 --xl "time (s)" --yl "error (m)"
-t "Absolute positioning error with DDL2"
```
B2.3. UPC1-UPC2 differential positioning with DDL2 carrier (using the computed differential corrections)

L2 Differential positioning after fixing ambiguities

Questions:
Compare the results with the previous ones computed from DDL1.
B2.4. UPC1-UPC2 differential positioning with DDL1 carrier (using the computed differential corrections)

Analyze the effect of a wrong ambiguity fix over a single satellite (e.g. PRN07)

Simulate an error of 1 cycle in DDN1 for satellite PRN07 and compute the navigation solution:

The following sentence can be used:

```
cat DD_UPC1_UPC2_06_ALL.fixL1L2 | gawk 'BEGIN{g2r=atan2(1,1)/45;}
{if ($4==07){$18=$18+0.19029};}
{e1=$14*g2r;a1=$15*g2r;e2=$16*g2r;a2=$17*g2r;printf "%s %14.4f
%8.4f %8.4f %8.4f
",$6,$8-$11-$18,-cos(e2)*sin(a2)+cos(e1)*sin(a1),
-cos(e2)*cos(a2)+cos(e1)*cos(a1),-sin(e2)+sin(e1)}' > L1model.dat
```

1 cycle is added to the DDN1 of satellite PRN07

Compute the Least Squares solution

```
cat L1model.dat | LS > L1fix.pos
```
B2.4. UPC1-UPC2 differential positioning with DDL1 carrier (using the computed differential corrections)

Plot the absolute positioning error:

```
graph.py -f L1fix.pos -x1 -y2- s.- -l "North error"
-f L1fix.pos -x1 -y3 -s.- -l "East error"
-f L1fix.pos -x1 -y4 -s.- -l "UP error"
--yn -.1 --yx .1 --xl "time (s)" --yl "error (m)"
-t "Absolute positioning error with a wrong ambiguity fix"
```
B2.4. UPC1-UPC2 differential positioning with DDL1 carrier (using the computed differential corrections)

L1 Differential positioning with a wrong ambiguity fix on a single satellite

Questions:
Discuss the results.
What is the effect of the wrong fix?
Introduction: gLAB processing in command line.

Preliminary computations: Data files.

Session A: Fixing DD ambiguities one at a time: UPC1-UPC2.

Session B: Assessing the fixed ambiguities in navigation: Differential positioning of UPC1-UPC2 receivers.

Session C: Fixing DD ambiguities with LAMBDA method.

Note: UPC1-UPC2 receivers baseline: 37.95 metres.
Session C

Fixing DD ambiguities with LAMBDA method

(baseline: 37.95 metres)
C Fixing the DDN1 and DDN2 ambiguities with LAMBDA Method

Apply the LAMBDA method to fix the ambiguities.

Consider only the two epochs: $t_1=18000$ and $t_2=18015$.

Note:
To avoid the synchronization issues, consider the Differential Positioning using the computed differential corrections, instead of the time-tagged measurements.

That is, we are going to solve the following navigation equations systems:

1. **Navigating with L1 carrier, to fix DDN1:**

 \[
 [DDL1-DDRho] = [Los_k-Los_06]*dr + [A]*[λ_1*DDN1]
 \]

2. **Navigating with L2 carrier, to fix DDN2:**

 \[
 [DDL2-DDRho] = [Los_k-Los_06]*dr + [A]*[λ_2*DDN2]
 \]
Consider again the previous problem of estimating Δr, a 3-vector of real numbers, and \mathbf{N} a $(K-I)$-vector of integers, which are solution of

$$\mathbf{y} = \mathbf{G} \Delta \mathbf{r} + \lambda \mathbf{A} \mathbf{N} + \mathbf{v}$$

The solution comprises the following steps:

1. Obtain the float solution and its covariance matrix:

 $$\begin{bmatrix} \Delta \hat{\mathbf{r}} \\ \hat{\mathbf{N}} \end{bmatrix} \sim \begin{bmatrix} \mathbf{P}_{\Delta \hat{\mathbf{r}}} & \mathbf{P}_{\Delta \hat{\mathbf{r}}, \hat{\mathbf{N}}} \\ \mathbf{P}_{\Delta \hat{\mathbf{r}}, \hat{\mathbf{N}}} & \mathbf{P}_{\hat{\mathbf{N}}} \end{bmatrix}$$

2. Find the integer vector \mathbf{N} which minimizes the cost function

 $$c(\mathbf{N}) = \| \mathbf{N} - \hat{\mathbf{N}} \|^2_{\mathbf{W}_\mathbf{N}} = (\mathbf{N} - \hat{\mathbf{N}})^T \mathbf{W}_\mathbf{N} (\mathbf{N} - \hat{\mathbf{N}})$$

 $$\mathbf{W}_\mathbf{N} = \mathbf{P}_{\hat{\mathbf{N}}}^{-1}$$

 a) **Decorrelation**: Using the Z transform, the ambiguity search space is re-parametrized to decorrelate the float ambiguities.

 b) **Integer ambiguities estimation** (e.g. by rounding or by using sequential conditional least-squares adjustment, together with a discrete search strategy).

 c) Using the Z^{-1} transform, the ambiguities are transformed to the original ambiguity space.

3. Obtain the ‘fixed’ solution $\Delta \mathbf{r}$, from the fixed ambiguities \mathbf{N}.

 $$\mathbf{y} - \lambda \mathbf{A} \mathbf{N} = \mathbf{G} \Delta \mathbf{r} + \mathbf{v}$$
C1. DDN1 ambiguity fixing: Differential positioning using computed differential corrections from a reference receiver.

Consider only the two epochs: \(t_1 = 18000 \) and \(t_2 = 18015 \).

The following procedure can be applied:

1. **Build-up the navigation system.**

2. **Compute the FLOATED solution**, solving the equations system with octave. Assess the accuracy of the floated solution.

3. **Apply the LAMBDA method to FIX the ambiguities**. Compare the results with the solution obtained by rounding directly the floated solution and by rounding the solution after decorrelation.
C1 Fixing the DDN1 ambiguities with LAMBDA Method

1. Building-up the navigation system

$$[DDL1-DDRho] = [Los_k - Los_06] *[dr] + [A]*[lambda1*DDN1]$$

Notation

$$\begin{bmatrix}
DDL_{1}^{6,03} - DD\rho^{6,03} \\
DDL_{1}^{6,07} - DD\rho^{6,07} \\
\vdots \\
DDL_{1}^{6,24} - DD\rho^{6,24}
\end{bmatrix} =
\begin{bmatrix}
-(\hat{\rho}^{6,07} - \hat{\rho}^{6})^T \\
-(\hat{\rho}^{6,03} - \hat{\rho}^{6})^T \\
0 \\
0 \\
\vdots \\
-(\hat{\rho}^{6,24} - \hat{\rho}^{6})^T
\end{bmatrix} * \begin{bmatrix}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 1
\end{bmatrix} * \begin{bmatrix}
\hat{\lambda}_1 DDN_{1}^{6,03} \\
\hat{\lambda}_1 DDN_{1}^{6,07} \\
\vdots \\
\hat{\lambda}_1 DDN_{1}^{6,24}
\end{bmatrix}$$

$$y = G x$$

Where the vector of unknowns \(x\) includes the user coordinates and ambiguities.
The receiver was not moving (static) during the data collection. Thence, for each epoch we have the equations system:

\[
\begin{bmatrix}
DDL_1^{6.03}(t_1) - DD\rho_1^{6.03}(t_1) \\
DDL_1^{6.07}(t_1) - DD\rho_1^{6.07}(t_1) \\
\vdots \\
DDL_1^{6.24}(t_1) - DD\rho_1^{6.24}(t_1)
\end{bmatrix} =
\begin{bmatrix}
-(\hat{\rho}^3(t_1) - \hat{\rho}^6(t_1))^T \\
-(\hat{\rho}^7(t_1) - \hat{\rho}^6(t_1))^T \\
\vdots \\
-(\hat{\rho}^{30}(t_1) - \hat{\rho}^6(t_1))^T
\end{bmatrix} \text{dr} +
\begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
\lambda_1 DDN_1^{6.03} \\
\lambda_1 DDN_1^{6.07} \\
\vdots \\
\lambda_1 DDN_1^{6.24}
\end{bmatrix}
\]

\[y_1 = G_1 x\]

\[y_1 := y[t1] \quad G1 := G[t1]\]

\[
\begin{bmatrix}
DDL_1^{6.03}(t_2) - DD\rho_1^{6.03}(t_2) \\
DDL_1^{6.07}(t_2) - DD\rho_1^{6.07}(t_2) \\
\vdots \\
DDL_1^{6.24}(t_2) - DD\rho_1^{6.24}(t_2)
\end{bmatrix} =
\begin{bmatrix}
-(\hat{\rho}^3(t_2) - \hat{\rho}^6(t_2))^T \\
-(\hat{\rho}^7(t_2) - \hat{\rho}^6(t_2))^T \\
\vdots \\
-(\hat{\rho}^{30}(t_2) - \hat{\rho}^6(t_2))^T
\end{bmatrix} \text{dr} +
\begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
\lambda_1 DDN_1^{6.03} \\
\lambda_1 DDN_1^{6.07} \\
\vdots \\
\lambda_1 DDN_1^{6.24}
\end{bmatrix}
\]

\[y_2 = G_2 x\]

\[y2 := y[t2] \quad G2 := G[t2]\]
In the previous computation we have not taken into account the correlations between the double differences of measurements. This matrix will be used now, as the LAMBDA method will be applied to FIX the carrier ambiguities.

a) Show that the covariance matrix of DDL1 is given by \mathbf{P}_y

\[
\begin{bmatrix}
2 & 1 & \cdots & 1 \\
1 & 2 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & 2
\end{bmatrix}
\]

b) Given the measurement vectors (\mathbf{y}) and Geometry matrices (\mathbf{G}) for two epochs

\[
\begin{align*}
\mathbf{y}_1 &= \mathbf{y}[t1] ; \quad \mathbf{G}_1 = \mathbf{G}[t1] ; \quad \mathbf{P}_y \\
\mathbf{y}_2 &= \mathbf{y}[t2] ; \quad \mathbf{G}_2 = \mathbf{G}[t2] ; \quad \mathbf{P}_y
\end{align*}
\]

show that the user solution and covariance matrix can be computed as:

\[
\mathbf{P} = \mathbf{P}_y^{-1} = (\mathbf{G}_1^T \mathbf{W} \mathbf{G}_1 + \mathbf{G}_2^T \mathbf{W} \mathbf{G}_2)^{-1}
\]

where: $\mathbf{W} = \mathbf{P}_y^{-1}$

\[
\begin{align*}
\mathbf{x} &= \mathbf{P}^{-1} (\mathbf{G}_1^T \mathbf{W} \mathbf{y}_1 + \mathbf{G}_2^T \mathbf{W} \mathbf{y}_2) \\
\mathbf{P} &= (\mathbf{G}_1^T \mathbf{W} \mathbf{G}_1)^{-1}
\end{align*}
\]
C1 Fixing the DDN1 ambiguities with LAMBDA Method

The script `MakeL1DifMat.scr` builds the equations system

\[
[DNL1-DNRho] = [Los_k - Los_06] \cdot [dr] + [A] \cdot [\lambda_1 \cdot DDN1]
\]

for the two epochs required \(t_1 = 18000 \) and \(t_2 = 18015 \), using the input file `DD_UPC1_UPC2_06_ALL.dat` generated before.

Execute:

```
MakeL1DifMat.scr DD_UPC1_UPC2_06_ALL.dat 18000 18015
```

The **OUTPUT** are the files `M1.dat` and `M2.dat` associated with each epoch.

Where:

- the columns of files `M.dat` are the vector \(y \) (first column) and Matrix \(G \) (next columns)
2. Compute the FLOATED solution (solving the equations system).

The following procedure can be applied

```octave
load M1.dat
load M2.dat
y1=M1(:,1);
G1=M1(:,2:12);
y2=M2(:,1);
G2=M2(:,2:12);
Py=(diag(ones(1,8))+ones(8))*2e-4;
W=inv(Py);
P=inv(G1'*W*G1+G2'*W*G2);
x=P*(G1'*W*y1+G2'*W*y2);
```

Solution

```
x(1:3)'
1.4216  -0.6058   0.4035
```
3. Applying the LAMBDA method to FIX the ambiguities.
Compare the results with the solution obtained by rounding the floated solution. The following procedure can be applied (justify the computations done)

```
 octave
 c=299792458;
f0=10.23e+6;
f1=154*f0;
 lambda1=c/f1
 a=x(4:11)/lambda1;
 Q=P(4:11,4:11);

 [Qz,Zt,Lz,Dz,az,iZ] = decorrel (Q,a);
 afixed=iZ*round(az);
 ans = 3.10696822814451
 afixed(:,1)'
 2   1   2  -1   4   7   1   4
```

1. Rounding directly the floated solution

```
 round(a)'
 0   6  -6   6   6  -1   8   9
```

2.- Rounding the decorrelated floated solution

```
 [Qz,Zt,Lz,Dz,az,iZ] = decorrel (Q,a);
 afixed=iZ*round(az);
```

3.- Decorrelation and integer LS search solution

```
 [Qz,Zt,Lz,Dz,az,iZ] = decorrel (Q,a);
 [azfixed,sqnorm] = lsearch (az,Lz,Dz,2);
 afixed=iZ*azfixed;
 sqnorm(2)/sqnorm(1)
 ans = 3.10696822814451
 afixed(:,1)'
 2   1   2  -1   4   7   1   4
```
Questions:
1. Can the ambiguities be well fixed?
2. Is the test resolutive?
3. Compare the fixed ambiguities with those obtained in the previous exercises when fixing the ambiguities one at a time. Are the same results found?
4. What is the elapsed time to needed fix the ambiguities? And in the previous exercise when fixing the ambiguities one at a time?
5. The values found for the ambiguities are the same than in the previous case?
a. Using the Octave/MATLAB program sentence `imagesc` display the covariance matrix of ambiguities before and after the decorrelation with the Z-matrix.
C2 Checking the Z-transform matrix

b.- Show the content of the integer matrix Z

Note: The previous routines computes its transpose (Z^t). Then: $Z = Z^t'$.

\[
Z = Z^t' =
\begin{bmatrix}
3 & -5 & -4 & -5 & 6 & 7 & 4 & -2 \\
3 & 2 & -7 & -6 & -5 & -4 & 9 & 3 \\
-4 & -0 & -5 & 8 & 3 & -4 & 1 & -3 \\
1 & -5 & 1 & -8 & 4 & -1 & 1 & 8 \\
-0 & 1 & 2 & 7 & -1 & -8 & -4 & 3 \\
8 & -3 & -1 & 4 & 2 & -6 & -1 & 4 \\
-5 & -1 & 1 & -6 & 1 & 0 & 1 & 4 \\
-5 & -3 & 0 & -0 & 5 & -2 & -1 & 3
\end{bmatrix}
\]
c.- Compute by hand the transformed covariance matrix Q_z:

$$Z * Q * Z'$$

d.- Compute the decorrelated ambiguities a_z:

$$Z^a$$

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>67.19877600816902</td>
<td>-27.00815309344809</td>
<td>-52.80792522348074</td>
<td>49.18410614456196</td>
<td>-53.87737144457776</td>
</tr>
<tr>
<td>-11.70730035212100</td>
<td>18.08081880749826</td>
<td>4.09968790147667</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C2. Checking the Z-transform Matrix
C2 Checking the Z-transform matrix

e. - Round-off the decorrelated ambiguities:

\[\text{Nz} = \text{round}(Z*a) \]

\[
\begin{array}{cccccccc}
67 & -27 & -53 & 49 & -54 & -12 & 18 & 4
\end{array}
\]

f. - Apply the inverse transform to these values:

\[\text{format short} \]

\[\text{inv}(Z)*\text{Nz} \]

\[
\begin{array}{cccc}
2.00000 & 1.00000 & 2.00000 & -1.00000 \\
4.00000 & 7.00000 & 1.00000 & 4.00000
\end{array}
\]

g. - Compare the previous results with the direct rounding of initial ambiguities “a”:

\[\text{round}(a) \]

\[
\begin{array}{cccccccc}
0 & -6 & 6 & 6 & -1 & 12 & 8 & 9
\end{array}
\]

Consider only the two epochs: $t_1=18000$ and $t_2=18015$.

The following procedure can be applied, as in the previous case:

1. **Build-up the navigation system.**

2. **Compute the FLOATED solution**, solving the equations system with octave. Assess the accuracy of the floated solution.

3. **Apply the LAMBDA method to FIX the ambiguities**. Compare the results with the solution obtained by rounding directly the floated solution and by rounding the solution after decorrelation.
C3 Fixing the DDN2 ambiguities with LAMBDA Method

1. Building-up the navigation system

\[
[DRL_2-DRrho] = [Los_k - Los_06]*[dr] + [A]*[lambda_2*DDN2]
\]

Notation

\[
\begin{bmatrix}
 DDL_2^{6.03} - DD\rho^{6.03} \\
 DDL_2^{6.07} - DD\rho^{6.07} \\
 \vdots \\
 DDL_2^{6.24} - DD\rho^{6.24}
\end{bmatrix} =
\begin{bmatrix}
 - (\hat{\rho}^3 - \hat{\rho}^6)^T \\
 - (\hat{\rho}^7 - \hat{\rho}^6)^T \\
 \vdots \\
 - (\hat{\rho}^{24} - \hat{\rho}^6)^T
\end{bmatrix} dr +
\begin{bmatrix}
 1 & 0 & \cdots & 0 \\
 0 & 1 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 \lambda_2 DDN_2^{6.03} \\
 \lambda_2 DDN_2^{6.07} \\
 \vdots \\
 \lambda_2 DDN_2^{6.24}
\end{bmatrix}
\]

\[y = G \, x\]

Where the vector of unknowns \(x\) includes the user coordinates and ambiguities.
The receiver was not moving (static) during the data collection. Thence, for each epoch we have the equations system:

\[
\begin{bmatrix}
\text{DDL}^{6.03}_2(t_1) - DD\rho^{6.03}_2(t_1) \\
\text{DDL}^{6.07}_2(t_1) - DD\rho^{6.07}_2(t_1) \\
\vdots \\
\text{DDL}^{6.24}_2(t_1) - DD\rho^{6.24}_2(t_1)
\end{bmatrix}
=
\begin{bmatrix}
-\left(\hat{p}^3(t_1) - \hat{p}^6(t_1)\right)^T \\
-\left(\hat{p}^7(t_1) - \hat{p}^6(t_1)\right)^T \\
\vdots \\
-\left(\hat{p}^{30}(t_1) - \hat{p}^6(t_1)\right)^T
\end{bmatrix}
\text{dr} +
\begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 1
\end{bmatrix}
\lambda_2 DDN^{6.03}_2
\]

\[y_1 = G_1 x\]

\[y_1 := y[t1]\]
\[G1 := G[t1]\]

\[
\begin{bmatrix}
\text{DDL}^{6.03}_2(t_2) - DD\rho^{6.03}_2(t_2) \\
\text{DDL}^{6.07}_2(t_2) - DD\rho^{6.07}_2(t_2) \\
\vdots \\
\text{DDL}^{6.24}_2(t_2) - DD\rho^{6.24}_2(t_2)
\end{bmatrix}
=
\begin{bmatrix}
-\left(\hat{p}^3(t_2) - \hat{p}^6(t_2)\right)^T \\
-\left(\hat{p}^7(t_2) - \hat{p}^6(t_2)\right)^T \\
\vdots \\
-\left(\hat{p}^{30}(t_2) - \hat{p}^6(t_2)\right)^T
\end{bmatrix}
\text{dr} +
\begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 1
\end{bmatrix}
\lambda_2 DDN^{6.24}_2
\]

\[y_2 = G_2 x\]

\[y_2 := y[t2]\]
\[G2 := G[t2]\]
C3 Fixing the DDN2 ambiguities with LAMBDA Method

In the previous sessions A and B we have not taken into account the correlations between the double differences of measurements. This matrix will be used now, as the LAMBDA method will be applied to FIX the carrier ambiguities.

\[P_y = 2\sigma^2 \begin{bmatrix} 2 & 1 & \cdots & 1 \\ 1 & 2 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & 2 \end{bmatrix} \]

a) Show that the covariance matrix of DDL2 is given by \(P_y \)

b) Given the measurement vectors \(y \) and Geometry matrices \(G \) for two epochs

\[y_1 := y[t1] \quad G_1 := G[t1] \quad P_y \\
 y_2 := y[t2] \quad G_2 := G[t2] \quad P_y \]

show that the user solution and covariance matrix can be computed as:

\[P = \text{inv}(G_1'^*W*G_1 + G_2'^*W*G_2); \]

where: \(W = \text{inv}(P_y) \)

\[x = P*(G_1'^*W*y_1 + G_2'^*W*y_2); \]

\[y = G \times; \quad W = P_y^{-1} \]

\[x = (G^T W G)^{-1} G^T W y \]

\[P = (G^T W G)^{-1} \]
The script `MakeL2DifMat.scr` builds the equations system

\[
\begin{bmatrix}
\text{DDL2-DDRho}\n\end{bmatrix} = \begin{bmatrix}
\text{Los}_k - \text{Los}_06
\end{bmatrix} \cdot \begin{bmatrix}
\text{dr}
\end{bmatrix} + \begin{bmatrix}
\text{A}
\end{bmatrix} \cdot \begin{bmatrix}
\lambda_2 \cdot \text{DDN2}
\end{bmatrix}
\]

for the two epochs required \(t_1 = 18000 \) and \(t_2 = 18015 \), using the input file `DD_UPC1_UPC2_06_ALL.dat` generated before.

Execute:

```
MakeL2DifMat.scr DD_UPC1_UPC2_06_ALL.dat 18000 18015
```

The **OUTPUT** are the files `M1.dat` and `M2.dat` associated with each epoch.

Where:
- the columns of files `M.dat` are the vector \(y \) (first column) and Matrix \(G \) (next columns)
2. Computing the FLOATED solution (solving the equations system).

The following procedure can be applied

```octave
load M1.dat
load M2.dat
y1=M1(:,1); G1=M1(:,2:12);
y2=M2(:,1); G2=M2(:,2:12);
Py=(diag(ones(1,8))+ones(8))*2e-4;
W=inv(Py);
P=inv(G1'*W*G1+G2'*W*G2);
x=P*(G1'*W*y1+G2'*W*y2);
```

Solution

```
x(1:3)'
   0.1442  -0.5154   0.5568
```
3. Applying the LAMBDA method to FIX the ambiguities. Compare the results with the solution obtained by rounding the floated solution. The following procedure can be applied (justify the computations done)

1. Rounding directly the floated solution

```
round(a)'
```

-1 -2 1 2 1 -2 3 -1

2.- Rounding the decorrelated floated solution

```
 octave
c=299792458;
f0=10.23e+6;
f2=120*f0;
lambda2=c/f2
a=x(4:11)/lambda2;
Q=P(4:11,4:11);
[Qz,Zt,Lz,Dz,az,iZ] = decorrel(Q,a);
afixed=iZ*round(az);
-1  1  -1  2  2  -1  1  0
```

3.- Decorrelation and integer LS search solution

```
[Qz,Zt,Lz,Dz,az,iZ] = decorrel(Q,a);
[azfixed,sqnorm] = lsearch(az,Lz,Dz,2);
afixed=iZ*azfixed;
sqnorm(2)/sqnorm(1)
ans  =  3.54056715815950
afixed(:,1)'
-1  1  -1  2  2  -1  1  0
```
C3 Fixing the DDN2 ambiguities with LAMBDA Method

Questions:
1. Can the ambiguities be well fixed?
2. Is the test resolutive?
3. Compare the fixed ambiguities with those obtained in the previous exercises when fixing the ambiguities one at a time. Are the same results found?
4. What is the elapsed time to needed fix the ambiguities? And in the previous exercise when fixing the ambiguities one at a time?
5. The values found for the ambiguities are the same than in the previous case?
C4. **UPC1-UPC2 Baseline vector estimation with L1 carrier (using the time-tagged reference station measurements)**

C4. **Estimate the baseline vector between UPC1 and UPC2 receivers using the L1 carrier measurements of file (DD_UPC1_UPC2_06_ALL.dat).**

Consider only the two epochs used in the previous exercise: \(t_1 = 14500 \) and \(t_2 = 14515 \)

The following procedure can be applied, as in the previous case:

1. **Build-up the navigation system.**
2. **Compute the FLOATED solution**, solving the equations system with octave. Assess the accuracy of the floated solution.
3. **Apply the LAMBDA method to FIX the ambiguities**. Compare the results with the solution obtained by rounding directly the floated solution and by rounding the solution after decorrelation.
C4. UPC1-UPC2 Baseline vector estimation with L1 carrier (using the time-tagged reference station measurements)

C4.1 Estimate the baseline vector between UPC1 and UPC2 receivers using the L1 carrier measurements of file (DD_UPC1_UPC2_06_ALL.dat).

\[
[DCL1] = [Los_k - Los_06][\text{baseline}] + [A][\lambda_1DDN1]
\]

Notation (for each epoch \(t\))

\[
\begin{bmatrix}
DDL_{6.03}^1 \\
DDL_{6.07}^1 \\
\vdots \\
DDL_{6.24}^1
\end{bmatrix} =
\begin{bmatrix}
-(\hat{\rho}^3 - \hat{\rho}^6)^T \\
-(\hat{\rho}^7 - \hat{\rho}^6)^T \\
\vdots \\
-(\hat{\rho}^{24} - \hat{\rho}^6)^T
\end{bmatrix} \begin{bmatrix}
1 \\
0 \\
\vdots \\
0
\end{bmatrix} + \begin{bmatrix}
\lambda_1DDN_{6.03}^1 \\
\lambda_1DDN_{6.07}^1 \\
\vdots \\
\lambda_1DDN_{6.24}^1
\end{bmatrix}
\]

\[y = Gx\]

Where the vector of unknowns \(x\) includes the user coordinates and ambiguities.
The receiver was not moving (static) during the data collection. Therefore, for each epoch we have the equations system:

\[
\begin{align*}
\begin{bmatrix}
D DL_{1,03}^{6}(t_1) \\
D DL_{1,07}^{6}(t_1) \\
\vdots \\
D DL_{1,24}^{6}(t_1)
\end{bmatrix} &= \begin{bmatrix}
-(\hat{\rho}^3(t_1) - \hat{\rho}^6(t_1))^T \\
-(\hat{\rho}^7(t_1) - \hat{\rho}^6(t_1))^T \\
\vdots \\
-(\hat{\rho}^{24}(t_1) - \hat{\rho}^6(t_1))^T
\end{bmatrix} \begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
\lambda_1 D D N_{1,03}^{6} \\
\lambda_1 D D N_{1,07}^{6} \\
\vdots \\
\lambda_1 D D N_{1,24}^{6}
\end{bmatrix} \\
&= y_1 = G_1 x
\end{align*}
\]

\[
\begin{align*}
\begin{bmatrix}
D DL_{1,03}^{6}(t_2) \\
D DL_{1,07}^{6}(t_2) \\
\vdots \\
D DL_{1,24}^{6}(t_2)
\end{bmatrix} &= \begin{bmatrix}
-(\hat{\rho}^3(t_2) - \hat{\rho}^6(t_2))^T \\
-(\hat{\rho}^7(t_2) - \hat{\rho}^6(t_2))^T \\
\vdots \\
-(\hat{\rho}^{24}(t_2) - \hat{\rho}^6(t_2))^T
\end{bmatrix} \begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
\lambda_1 D D N_{1,03}^{6} \\
\lambda_1 D D N_{1,07}^{6} \\
\vdots \\
\lambda_1 D D N_{1,24}^{6}
\end{bmatrix} \\
&= y_2 = G_2 x
\end{align*}
\]

\[
[D DL_{1}] = [Los_k - Los_06]*[baseline] + [A]*[lambda1*DDN1]
\]
C4. UPC1-UPC2 Baseline vector estimation with L1 carrier (using the time-tagged reference station measurements)

In the previous sessions A and B we have not taken into account the correlations between the double differences of measurements. This matrix will be used now, as the LAMBDA method will be applied to FIX the carrier ambiguities.

a) Show that the covariance matrix of DDL1 is given by P_y

b) Given the measurement vectors (y) and Geometry matrices (G) for two epochs

\[
y_1 := y[t1] \quad ; \quad G_1 := G[t1] \quad ; \quad P_y
\]
\[
y_2 := y[t2] \quad ; \quad G_2 := G[t2] \quad ; \quad P_y
\]

show that the user solution and covariance matrix can be computed as:

\[
P = \text{inv}(G_1'*W*G_1 + G_2'*W*G_2);
\]

where: $W = \text{inv}(P_y)$

\[
x = P* (G_1'*W*y_1 + G_2'*W*y_2);
\]

\[
y = G x; \quad W = P_y^{-1}\]
\[
x = (G^T W G)^{-1} G^T W y
\]
\[
P = (G^T W G)^{-1}\]
The script `MakeL1BslMat.scr` builds the equations system

\[[\text{DDL1}] = [\text{Los}_k - \text{Los}_06] \times [\text{baseline}] + [\text{A}] \times [\lambda_1 \times \text{DDN1}] \]

for the two epochs required \(t_1 = 18000 \) and \(t_2 = 18015 \), using the input file `DD_UPC1_UPC2_06_ALL.dat` generated before.

Execute:

`MakeL1BslMat.scr DD_UPC1_UPC2_06_ALL.dat 18000 18015`

The **OUTPUT** are the files `M1.dat` and `M2.dat` associated with each epoch.

Where:

- the columns of files `M.dat` are the vector \(y \) (first column) and Matrix \(G \) (next columns)
1. Computing the FLOATED solution (solving the equations system).

The following procedure can be applied:

```octave
load M1.dat
load M2.dat
y1=M1(:,1);
G1=M1(:,2:12);
y2=M2(:,1);
G2=M2(:,2:12);
Py=(diag(ones(1,8))+ones(8))*2e-4;
W=inv(Py);
P=inv(G1'*W*G1+G2'*W*G2);
x=P*(G1'*W*y1+G2'*W*y2);
```

```
x(1:3)'
-24.5735  -27.1121    3.0021
bsl_enu =[-27.4170  -26.2341  -0.0304]
x(1:3)'-bsl_enu
ans=  2.84348   -0.87798  3.03248
```
C4. UPC1-UPC2 Baseline vector estimation with L1 carrier (using the time-tagged reference station measurements)

3. Applying the LAMBDA method to FIX the ambiguities.
Compare the results with the solution obtained by rounding the floated solution. The following procedure can be applied (justify the computations done)

```octave
1. Rounding directly the floated solution
round(a)'
-4   -20   13   11  -14   19   10   16

2.- Rounding the decorrelated floated solution

 octave
c=299792458;
f0=10.23e+6;
f1=154*f0;
lambda1=c/f1;
a=x(4:11)/lambda1;
Q=P(4:11,4:11);
[Qz,Zt,Lz,Dz,az,iZ] = decorrel (Q,a);
afixed=iZ*round(az);
-1   -12   18   2   -4   8   9   4

3.- Decorrelation and integer LS search solution

 octave
[Qz,Zt,Lz,Dz,az,iZ] = decorrel (Q,a);
[azfixed,sqnorm] = lsearch (az,Lz,Dz,2);
afixed=iZ*azfixed;
sqnorm(2)/sqnorm(1)
ans = 1.22717645070483
afixed(:,1)'
-1   -12   18   2   -4   8   9   4
```

C4. Baseline vector estimation with DDL1

@ J. Sanz & J.M. Juan 124
Questions:
1. Can the ambiguities be well fixed?
2. Is the test resolutive?
3. Compare the fixed ambiguities with those obtained in the previous exercises when fixing the ambiguities one at a time. Are the same results found?
4. What is the elapsed time to needed fix the ambiguities? And in the previous exercise when fixing the ambiguities one at a time?
5. The values found for the ambiguities are the same than in the previous case?
C5. Estimate the baseline vector between UPC1 and UPC2 receivers using the L2 carrier measurements of file (DD_UPC1_UPC2_06_ALL.dat).

Consider only the two epochs used in the previous exercise: $t_1=14500$ and $t_2=14515$

The following procedure can be applied, as in the previous case:

1. **Build-up the navigation system.**

2. **Compute the FLOATED solution**, solving the equations system with octave. Assess the accuracy of the floated solution.

3. **Apply the LAMBDA method to FIX the ambiguities**. Compare the results with the solution obtained by rounding directly the floated solution and by rounding the solution after decorrelation.
C5. UPC1-UPC2 Baseline vector estimation with L2 carrier (using the time-tagged reference station measurements)

C5.1 Estimate the baseline vector between UPC1 and UPC2 receivers using the L2 carrier measurements of file (DD_UPC1_UPC2_06_ALL.dat).

\[
\begin{align*}
[D_L2] &= [\text{Los}_k - \text{Los}_06][\text{baseline}] + [A][\text{lambda}_2*D_N2]
\end{align*}
\]

Notation (for each epoch \(t \))

\[
\begin{bmatrix}
D_L2^{6,03} \\
D_L2^{6,07} \\
\vdots \\
D_L2^{6,24}
\end{bmatrix}
=
\begin{bmatrix}
-\left(\hat{\rho}^3 - \hat{\rho}^6\right)^T \\
-\left(\hat{\rho}^7 - \hat{\rho}^6\right)^T \\
\vdots \\
-\left(\hat{\rho}^{24} - \hat{\rho}^6\right)^T
\end{bmatrix}
\begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\lambda_2 _D_N^{6,03} \\
\lambda_2 _D_N^{6,07} \\
\vdots \\
\lambda_2 _D_N^{6,24}
\end{bmatrix}
\]

\[
y = G _x
\]

Where the vector of unknowns \(x \) includes the user coordinates and ambiguities.
C5. UPC1-UPC2 Baseline vector estimation with L2 carrier (using the time-tagged reference station measurements)

The receiver was not moving (static) during the data collection. Therefore, for each epoch we have the equations system:

\[
\begin{align*}
\begin{bmatrix}
DDL_{2,03}^6(t_1) \\
DDL_{2,07}^6(t_1) \\
\vdots \\
DDL_{2,24}^6(t_1)
\end{bmatrix}
&=
\begin{bmatrix}
-(\hat{p}^3(t_1) - \hat{p}^6(t_1))^T \\
-(\hat{p}^7(t_1) - \hat{p}^6(t_1))^T \\
\vdots \\
-(\hat{p}^{24}(t_1) - \hat{p}^6(t_1))^T
\end{bmatrix}
\begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\lambda_2 DDN_{2,03}^6 \\
\lambda_2 DDN_{2,07}^6 \\
\vdots \\
\lambda_2 DDN_{2,24}^6
\end{bmatrix}
+ r
\end{align*}
\]

\[
y_1 = \mathbf{G}_1 \mathbf{x}
\]

\[
y_1 := y[t1] \\
G1:=G[t1]
\]

\[
\begin{align*}
\begin{bmatrix}
DDL_{2,03}^6(t_2) \\
DDL_{2,07}^6(t_2) \\
\vdots \\
DDL_{2,24}^6(t_2)
\end{bmatrix}
&=
\begin{bmatrix}
-(\hat{p}^3(t_2) - \hat{p}^6(t_2))^T \\
-(\hat{p}^7(t_2) - \hat{p}^6(t_2))^T \\
\vdots \\
-(\hat{p}^{24}(t_2) - \hat{p}^6(t_2))^T
\end{bmatrix}
\begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\lambda_2 DDN_{2,03}^6 \\
\lambda_2 DDN_{2,07}^6 \\
\vdots \\
\lambda_2 DDN_{2,24}^6
\end{bmatrix}
+ r
\end{align*}
\]

\[
y_2 = \mathbf{G}_2 \mathbf{x}
\]

\[
y_2 := y[t2] \\
G2:=G[t2]
\]

[DDL2]=[Los_k - Los_06]*[baseline] + [A]*[lambda2*DDN2]
In the previous sessions A and B we have not taken into account the correlations between the double differences of measurements. This matrix will be used now, as the LAMBDA method will be applied to FIX the carrier ambiguities.

a) Show that the covariance matrix of DDL2 is given by \mathbf{P}_y

$$
\mathbf{P}_y = 2\sigma^2 \\
= \begin{bmatrix}
2 & 1 & \cdots & 1 \\
1 & 2 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & 2
\end{bmatrix}
$$

b) Given the measurement vectors (\mathbf{y}) and Geometry matrices (\mathbf{G}) for two epochs

$\mathbf{y}_1 := y[t1]$; $\mathbf{G}_1 := G[t1]$; \mathbf{P}_y

$\mathbf{y}_2 := y[t2]$; $\mathbf{G}_2 := G[t2]$; \mathbf{P}_y

show that the user solution and covariance matrix can be computed as:

$\mathbf{P} = \text{inv}(\mathbf{G}_1^\prime \mathbf{W} \mathbf{G}_1 + \mathbf{G}_2^\prime \mathbf{W} \mathbf{G}_2)$;

where: $\mathbf{W} = \text{inv}(\mathbf{P}_y)$

$$
\mathbf{x} = \mathbf{P}^* (\mathbf{G}_1^\prime \mathbf{W} \mathbf{y}_1 + \mathbf{G}_2^\prime \mathbf{W} \mathbf{y}_2) ;
$$

$$
\mathbf{y} = \mathbf{G} \mathbf{x}; \quad \mathbf{W} = \mathbf{P}_y^{-1}
$$

$$
\mathbf{x} = (\mathbf{G}^\prime \mathbf{W} \mathbf{G})^{-1} \mathbf{G}^\prime \mathbf{W} \mathbf{y}
$$

$$
\mathbf{P} = (\mathbf{G}^\prime \mathbf{W} \mathbf{G})^{-1}
$$
C5. UPC1-UPC2 Baseline vector estimation with L2 carrier (using the time-tagged reference station measurements)

The script `MakeL1BslMat.scr` builds the equations system

\[
[\text{DDL2}] = [\text{Los}_k - \text{Los}_06][\text{baseline}] + [A][\lambda_2^*\text{DDN2}]
\]

for the two epochs required \(t_1 = 18000 \) and \(t_2 = 18015 \), using the input file `DD_UPC1_UPC2_06_ALL.dat` generated before.

Execute:

```
MakeL2BslMat.scr DD_UPC1_UPC2_06_ALL.dat 18000 18015
```

The **OUTPUT**

are the files `M1.dat` and `M2.dat` associated with each epoch.

Where:

the columns of files `M.dat` are the vector \(y \) (first column) and Matrix \(G \) (next columns)
C5. UP1-UPC2 Baseline vector estimation with L2 carrier (using the time-tagged reference station measurements)

1. Computing the FLOATED solution (solving the equations system).

The following procedure can be applied:

```
octave
load M1.dat
load M2.dat
y1=M1(:,1);
G1=M1(:,2:12);
y2=M2(:,1);
G2=M2(:,2:12);
Py=(diag(ones(1,8))+ones(8))*2e-4;
W=inv(Py);
P=inv(G1'*W*G1+G2'*W*G2);
x=P*(G1'*W*y1+G2'*W*y2);
x(1:3)'
-25.85097 -27.02162 3.15538
bsl_enu =[-27.4170 -26.2341 -0.0304]
x(1:3)'-bsl_enu
ans= 1.5660 -0.7875 3.18578
```
3. Applying the LAMBDA method to FIX the ambiguities. Compare the results with the solution obtained by rounding the floated solution. The following procedure can be applied (justify the computations done)

octave

```octave
C = 299792458;
f0 = 10.23e+6;
f2 = 120 * f0;
lambda2 = c / f2;
a = x(4:11) / lambda2;
Q = P(4:11,4:11);
[Qz, Zt, Lz, Dz, az, iZ] = decorrel(Q, a);
```

2.- Rounding the decorrelated floated solution

```octave
afixed = iZ * round(az);
```

3.- Decorrelation and integer LS search solution

```octave
[Qz, Zt, Lz, Dz, az, iZ] = decorrel(Q, a);
[azfixed, sqnorm] = lsearch(az, Lz, Dz, 2);
afixed = iZ * azfixed;
sqnorm(2)/sqnorm(1)
ans = 1.00508811343751
afixed(:, 1)'
-3 7 -6 13 -3 19 -3 24
```
Questions:
1. Can the ambiguities be well fixed?
2. Is the test resolutive?
3. Compare the fixed ambiguities with those obtained in the previous exercises when fixing the ambiguities one at a time. Are the same results found?
4. What is the elapsed time to needed fix the ambiguities? And in the previous exercise when fixing the ambiguities one at a time?
5. The values found for the ambiguities are the same than in the previous case?
Thanks for your attention
Acknowledgements

- To the University of Delft for the MATLAB files of LAMBDA method.
- To Adrià Rovira-Garcia for his contribution to the editing of this material and gLAB updating and integrating this learning material into the GLUE.

The ESA/UPC GNSS-Lab Tool suite (gLAB) has been developed under the ESA Education Office contract N. P1081434.